Unimon: A new qubit to boost quantum computers for useful applications

14
/
11
/
2022
3
 min. read
Artistic impression of a unimon qubit in a quantum processor. Credits: Aleksandr Kakinen.

Espoo, Finland, 15 November 2022 — A group of scientists from IQM Quantum Computers, Aalto University, and VTT Technical Research Centre of Finland have discovered a new superconducting qubit, the unimon, to increase the accuracy of quantum computations. The team has achieved the first quantum logic gates with unimons at 99.9% fidelity — a major milestone on the quest to build commercially useful quantum computers. This pivotal piece of research was just published in the journal Nature Communications.

Of all the different approaches to build useful quantum computers, superconducting qubits are on the lead. However, the qubit designs and techniques currently used do not yet provide high enough performance for practical applications. In this noisy intermediate-scale quantum (NISQ) era, the complexity of the implementable quantum computations is mostly limited by errors in single- and two-qubit quantum gates. The quantum computations need to become more accurate to be useful.

Our aim is to build quantum computers which deliver an advantage in solving real-world problems. Our announcement today is an important milestone for IQM and a significant achievement to build better superconducting quantum computers,” said Mikko Möttönen, Joint Professor of Quantum Technology at Aalto University and VTT, and also a Co-Founder and Chief Scientist at IQM Quantum Computers, who was leading the research.

Today, IQM has introduced a new superconducting-qubit type, the unimon, which unites in a single circuit the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to magnetic noise, and a simple structure consisting only of a single Josephson junction in a resonator. The team achieved fidelities from 99.8% to 99.9% for 13-nanoseconds-long single-qubit gates on three different unimon qubits.

Because of the higher anharmonicity, or non-linearity, than in transmons, we can operate the unimons faster, leading to fewer errors per operation,” said Eric Hyyppä who is working on his PhD at IQM.

To experimentally demonstrate the unimon, the scientists designed and fabricated chips, each of which consisted of three unimon qubits. They used niobium as the superconducting material apart from the Josephson junctions, in which the superconducting leads were fabricated using aluminum.

I would like to thank and congratulate Eric and the other team members who worked tirelessly for this major achievement,” said Prof. Möttönen.

The team measured the unimon qubit to have a relatively high anharmonicity while requiring only a single Josephson junction without any superinductors, and bearing protection against noise. The geometric inductance of the unimon has the potential for higher predictability and yield than the junction-array-based superinductors in conventional fluxonium or quarton qubits.

Unimons are so simple and yet have many advantages over transmons. The fact that the very first unimon ever made worked this well gives plenty of room for optimization and major breakthroughs. As next steps, we should optimize the design for even higher noise protection and demonstrate two-qubit gates,” added Prof. Möttönen.

IQM’s commercial quantum computers still use transmon qubits. With transmons, IQM already delivers on-premises quantum computers, for example IQM is building Finland’s first 54-qubit quantum computer as part of a co-innovation project with VTT Technical Research Center of Finland, and an IQM-led consortium Q-Exa is also building a 20-qubit quantum computer in Germany, to be integrated to a supercomputer. The unimon invented now is an alternative qubit that may lead to higher accuracy in quantum computations in the future.

We aim for further improvements in the design, materials, and gate time of the unimon to break the 99.99% fidelity target for useful quantum advantage with noisy systems and efficient quantum error correction. This is a very exciting day for quantum computing!” concluded Prof. Möttönen.

(The original press release can be found from here.)

About IQM Quantum Computers

IQM is the global leader in building quantum computers. IQM provides on-premises quantum computers for supercomputing centres and research labs and offers full access to its hardware. For industrial customers, IQM delivers quantum advantage through a unique application-specific, co-design approach.

IQM’s commercial quantum computers include Finland’s first commercial 50-qubit quantum computer with VTT, IQM-led consortium’s (Q-Exa) HPC quantum accelerator in Germany, and IQM processors will also be used in the first quantum accelerator in Spain. IQM has over 290 employees with offices in Espoo (Finland), Munich (Germany), Madrid (Spain), Paris (France), Singapore, and Palo Alto (CA, US).

IQM Media contact

Sylwia Barthel de Weydenthal
Head of Marketing and Communications

Explore more

Press release
22
/
04
/
2024

IQM Resonance webinar to showcase how cloud quantum computing can advance exploration and research

Read more
3
 min. read
Press release
25
/
03
/
2024

Jülich Supercomputing Centre to install new quantum computer “IQM Spark” in July

Read more
3
 min. read
Press release
19
/
03
/
2024

IQM Quantum Computers launches IQM Resonance, a cloud service to advance quantum exploration and research

Read more
2
 min. read
Press release
19
/
02
/
2024

IQM Quantum Computers announces restructuring programme for next-phase growth

Read more
1
 min. read
Press release
19
/
02
/
2024

IQM Quantum Computers achieves a new benchmark result on 20-qubit quantum computer

Read more
2
 min. read
Press release
13
/
02
/
2024

IQM Quantum Computers announces a new Co-CEO structure for the next growth phase

Read more
3
 min. read
Press release
29
/
01
/
2024

IQM–OpenOcean–Lakestar State of Quantum 2024: Quantum resilient to investment slowdown with widespread government backing

Read more
5
 min. read
Press release
29
/
01
/
2024

State of Quantum 2024 Report

Read more
3
 min. read
Press release
14
/
12
/
2023

IQM announces expansion to US, signs partnership with UC Berkeley to develop advanced quantum processors

Read more
3
 min. read
Press release
13
/
11
/
2023

IQM Quantum Computers to advance future hybrid quantum applications with NVIDIA

Read more
1
 min. read
Press release
08
/
11
/
2023

IQM launches IQM Radiance – a 150-qubit system paving the way to quantum advantage

Read more
3
 min. read
Press release
09
/
10
/
2023

Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues

Read more
3
 min. read